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Abstract
A vertex cover (VC) of a graph G is a subset of vertices in G
such that at least one endpoint vertex of each edge in G is in
this subset. The minimum VC (MVC) problem is to identify
a VC of minimum size (cardinality) and is known to be NP-
hard. Although many local search algorithms have been de-
veloped to solve the MVC problem close-to-optimally, their
applicability on giant graphs is limited. For such graphs, there
are two reasons why it would be beneficial to have linear-
time-and-space algorithms that produce small VCs. Such al-
gorithms can: (a) serve as preprocessing steps to produce
good starting states for local search algorithms, and (b) also
be useful for many applications that require finding small
VCs quickly. In this paper, we develop a new linear-time-
and-space algorithm, called MVC-WP, for solving the MVC
problem on giant graphs based on the idea of warning prop-
agation, which has only been used as a theoretical tool for
studying properties of MVCs on infinite random graphs. We
empirically show that it outperforms other known linear-time-
and-space algorithms in terms of solution quality.

Introduction
Thanks to the advancement of technologies such as the Inter-
net and database management systems, datasets have been
growing tremendously over the past decade and have re-
sulted in many giant datasets. Among these giant datasets,
many can be modeled as graphs, such as social networks,
brain networks, and street networks. Therefore, it is essen-
tial to develop algorithms to solve classical combinatorial
problems on giant graphs.

A vertex cover (VC) on an undirected graph G = 〈V,E〉
is defined as a set of vertices S ⊆ V such that every edge
in E has at least one of its endpoint vertices in S. A mini-
mum VC (MVC) is a VC on G with minimum size (cardi-
nality), i.e., there exists no VC whose size is smaller than
that of an MVC. The MVC problem is to find an MVC on
a given graph G. Its decision version is known to be NP-
complete (Karp 1972). An independent set (IS) on G is a set
of vertices T ⊆ V such that no two vertices in T are adjacent
to each other. The concept of IS is deeply connected to that
of VC: The complement of a (maximum) IS is a (minimum)
VC and vice versa, i.e., for any (maximum) IS T , V \ T is
always a (minimum) VC.

The MVC problem has been widely used to study var-
ious real-world and theoretical problems. For example, in

practice, it has been used in computer network security (Fil-
iol et al. 2007), in crew scheduling (Sherali and Rios 1984),
and in the construction of phylogenetic trees (Abu-Khzam et
al. 2004). In theoretical research, it has been used to prove
the NP-completeness of various other well-known prob-
lems, such as the set cover problem and the dominating set
problem (Korte and Vygen 2012). It is also a fundamental
problem studied in the theory of fixed-parameter tractabil-
ity (Flum and Grohe 2006).

Various researchers have developed exact solvers (Niska-
nen and Östergård 2003; Yamaguchi and Masuda 2008;
Fang, Li, and Xu 2016; Xu, Kumar, and Koenig 2016) for
the MVC problem and its equivalents. However, none of
these solvers work well for large problem instances of the
MVC problem due to its NP-hardness. Furthermore, solving
the MVC problem within any approximation factor smaller
than 1.3606 is also NP-hard (Dinur and Safra 2005).

To overcome the poor efficiency of exact algorithms
and the high approximation factor of polynomial-time ap-
proximation algorithms, researchers have focused on de-
veloping non-exact local search algorithms (Pullan 2009;
Andrade, Resende, and Werneck 2012; Cai et al. 2013;
Cai 2015) for solving the MVC problem and its equivalents.
These algorithms often require a preprocessing step to con-
struct a VC (usually the smaller the better) before starting
the local search. While polynomial-time procedures work
well for the preprocessing step on regular-sized graphs, they
are prohibitively expensive on giant graphs. On giant graphs,
this preprocessing step needs to terminate fast and should
use only a moderate amount of space. Therefore, it is impor-
tant to develop a linear-time-and-space algorithm to find a
small VC.

In addition, many real-world applications on giant graphs
require the identification of small VCs but not necessarily
the MVCs. One example of such applications is the influ-
ence maximization problem in social networks (Goyal, Lu,
and Lakshmanan 2011). Here, too, linear-time-and-space al-
gorithms for finding small VCs are imperative.

In this paper, we develop a new linear-time-and-space al-
gorithm, called MVC-WP, for solving the MVC problem
on giant graphs based on the idea of warning propagation,
which has so far only been used as a theoretical tool for
studying properties of MVCs on infinite random graphs. We
then empirically show that MVC-WP has several advantages
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(a) u sends a message of 1 to v since all other incoming messages
are 0.
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(b) u sends a message of 0 to v since one of its incoming messages
from other vertices is 1.

Figure 1: Illustrates the update of a message from u ∈ V to
v ∈ V in the warning propagation algorithm for the MVC
problem on input graph G = 〈V,E〉. Only relevant parts of
G are shown, i.e., u, v, and all edges incident to u.

over other linear-time-and-space algorithms. We also exper-
iment with variants of MVC-WP to empirically demonstrate
the usefulness of various steps in it.

Background
In this section, we introduce relevant background on random
graph models, warning propagation, and existing linear-
time-and-space MVC algorithms known to the authors.

Random Graph Models
The Erdős-Rényi Model An Erdős-Rényi model (ER
model) (Erdős and Rényi 1959) is characterized by two pa-
rameters n and p. It generates random graphs with n ver-
tices and connects every pair of vertices with probability p.
We call a graph generated by an ER model an ER graph.
The degrees of the vertices of an ER graph follow a Poisson
distribution. The average degree of vertices is c = np.

The Scale-Free Model A scale-free model (SF
model) (Barabási and Albert 1999) is characterized by
two parameters n and λ > 2. It generates random graphs
whose vertex degree distribution follows a power law, i.e.,
P (d) ∼ d−λ. The average degree of vertices is therefore

c =

+∞∑
d=1

P (d)d =
ζ(λ− 1)

ζ(λ)
, (1)

where ζ(x) =
∑∞
k=1

1
kx is the Riemann zeta function. For

notational convenience, we define Z(λ) = ζ(λ−1)
ζ(λ) . We call

a graph generated by an SF model an SF graph.

Warning Propagation
The warning propagation algorithm is a specialized mes-
sage passing algorithm where information is processed lo-
cally and exchanged between relevant variables (Mézard
and Montanari 2009). In the warning propagation algorithm,
messages can only take one of two values, namely 0 or 1.

To analyze properties of MVC on infinite random graphs,
(Weigt and Zhou 2006) proposed an algorithm that uses
warning propagation for solving the MVC problem to help
with their theoretical analysis. In their algorithm, messages
are passed between adjacent vertices. A message of 1 from
u ∈ V to v ∈ V indicates that u is not in the MVC and thus
it “warns” v to be included in the MVC. Otherwise, if u is
in the MVC, this message would be 0. Based on this intu-
ition, the warning propagation algorithm updates messages
according to the following rules until convergence: A mes-
sage from u to v is updated to 1 iff all incoming messages
to u from its other neighbors equal 0, i.e., no other adja-
cent vertices of u require u to be in the VC. Otherwise, this
message would be 0. Figure 1 illustrates these rules. The
theoretical analysis in (Weigt and Zhou 2006) mainly fo-
cuses on ER graphs. They show that, on an infinitely large
ER graph, a message is 1 with probability W (c)/c, where
W (·) is the Lambert-W function, i.e., the inverse function
of f(x) = x exp(x).

Known Linear-Time-and-Space MVC Algorithms
MVC-2 This well-known linear-time-and-space factor-2
approximation algorithm for the MVC problem works as
follows (Vazirani 2003): In each iteration, the algorithm first
arbitrarily selects an uncovered edge, then marks it as well
as the edges incident to its two endpoint vertices as being
covered, and finally adds its endpoint vertices to the VC.
The algorithm terminates when all edges are marked as be-
ing covered.

ConstructVC Serving as a preprocessing step, Con-
structVC is a greedy linear-time-and-space subroutine in the
FastVC solver (Cai 2015), that constructs a minimal VC1.
It works as follows: In each iteration, ConstructVC first ar-
bitrarily selects an uncovered edge, then adds its endpoint
vertex v with the larger degree to the VC, and finally marks
all edges incident to v as being covered. After all edges are
marked as being covered, ConstructVC removes all redun-
dant vertices in the VC to construct a minimal VC.

R This algorithm is used as the preprocessing step to pro-
duce a maximal IS (complement of a minimal VC) in the
local search algorithm for solving the maximum IS problem
developed by (Andrade, Resende, and Werneck 2012). R can
be easily adjusted to produce a minimal VC and the adapted
algorithm works as follows: R first adds all vertices into the
VC. In each iteration, R randomly removes a vertex v from
the VC if it continues to be a VC even after the removal. R
terminates when the VC is minimal.

MVC-MPL MVC-MPL (Xu, Kumar, and Koenig 2017)
is a linear-time-and-space MVC algorithm based on the in-
tuition of warning propagation on ER graphs. It works as
follows: In each iteration, MVC-MPL first arbitrarily selects
a vertex, then adds it to the VC or the IS with a probability
derived from theoretical results that govern warning prop-
agation on ER graphs. It terminates when every vertex has
been added to either the VC or the IS.

1A minimal VC is a VC such that no proper subset thereof is
also a VC.



Warning Propagation on Scale-Free Graphs
Assuming that the warning propagation algorithm is applied
on an SF graph, we derive the approximate message distri-
bution upon convergence by following a method similar to
that in (Weigt and Zhou 2006, section IV.B). We use p0 and
p1 to denote the fractions of all messages with values 0 and
1 upon convergence, respectively. Clearly, we have

p0 + p1 = 1. (2)

A message mu→v from vertex u to vertex v is equal to 1
iff all messages incoming to u from its other neighbors are
equal to 0, i.e., ∀w ∈ ∂u \ v : mw→u = 0, where ∂u is
the set of vertices adjacent to u. Assuming that all messages
incoming to u are independent, and using the fact that the
probability distribution of the number of such messages fol-
lows a power law on an SF graph, we have

1− p0 = p1 =

∞∑
d=1

d−λ

ζ(λ)
pd−10 =

Liλ(p0)

p0ζ(λ)
, (3)

where Liλ(x) =
∑∞
k=1

xk

kλ
is the polylogarithm function.

After making the approximation Liλ(p0) ≈ p0 +
p20
2λ

, we
solve Equation (3) for p0 and have

p0 =
ζ(λ)− 1

ζ(λ) + 1
2λ

. (4)

Here, we have ∀λ > 2 : 0 ≤ p0 ≤ 1. Therefore, for any
λ > 2, Equation (4) is always a valid solution for p0.

The Algorithm
Our algorithm MVC-WP (Algorithm 1) is based on the ana-
lytical results that govern the warning propagation algorithm
for the MVC problem (Weigt and Zhou 2006). It first uses
Algorithm 2 to identify those vertices that are necessarily in
some MVC and modifies the input graph accordingly. It then
treats this modified graph as if it were an ER or SF graph and
computes p0 using Algorithm 3. (Although MVC-WP treats
the graph as if it were an ER or SF graph, it does not impose
any restrictions on the graph.) MVC-WP thereafter assigns
each message from vertex u to vertex v to be 1 with proba-
bility pκ(u)−10 , where κ(u) denotes the degree of u. This is
done under the assumption that all incoming messages of u
have independent probabilities to be 0 or 1. Then, MVC-WP
performs warning propagation for M iterations, where M is
a given parameter. After M iterations, v is marked as being
included in V C iff it receives at least one message of 1. If
v is excluded, MVC-WP marks all its adjacent vertices as
being included in V C. Finally, MVC-WP uses Algorithm 4
to remove redundant vertices from V C to make it a minimal
VC. This step is adapted from Lines 6 to 14 of Algorithm 2
in (Cai 2015).

We now formally prove the correctness and time and
space complexities of MVC-WP.
Theorem 1. MVC-WP produces a minimal VC.

Proof. We first prove that all edges removed from G by
Algorithm 2 are covered by the V C that it outputs. In Al-
gorithm 2, Lines 12 and 14 are the only steps that remove

Algorithm 1: MVC-WP
1 Function MVC-WP(G = 〈V,E〉, model, M)

Input: G: The graph to find an MVC for.
Input: model: The random graph model to use (ER or

SF).
Input: M : User-specified number of iterations of the

warning propagation algorithm.
Output: A minimal VC of G.

2 V C, IS :=Prune-Leaves(G);
3 p0 := Compute-p0(G, model);
4 Convert G to a directed graph G′ = 〈V,E′〉 by

introducing 〈u, v〉 and 〈v, u〉 in E′ for each (u, v) ∈ E;
5 Build an associative array m for the edges of G′ to

represent messages;
6 Build an associative array counter for the vertices of G′

to record the number of incoming messages equal to 1;
7 Initialize counter to zeros;
8 • Initialize messages:
9 for each 〈u, v〉 ∈ E′ do

10 Draw a random number r ∈ [0, 1];
11 if r ≤ pκ(u)−1

0 then
12 mu→v := 1;
13 counter(v) := counter(v) + 1;
14 else
15 mu→v := 0;

16 • Run M iterations of the warning propagation
algorithm:

17 for t := 1, . . . ,M do
18 for each 〈u, v〉 ∈ E′ do
19 if counter(u)−mv→u = 0 then
20 if mu→v = 0 then
21 mu→v := 1;
22 counter(v) := counter(v) + 1;

23 else
24 if mu→v = 1 then
25 mu→v := 0;
26 counter(v) := counter(v)− 1;

27 • Construct a VC:
28 while ∃v ∈ V \ (V C ∪ IS) do
29 v := any vertex in V \ (V C ∪ IS);
30 if counter(v) = 0 then
31 Add v to IS and all u in ∂v to V C;
32 else
33 Add v to V C;

34 V C := Remove-Redundancy(G, V C);
35 return V C;

edges. However, these edges are covered by V C as shown
on Line 9. In addition, IS is an independent set since only
leaves are added to it. In Algorithm 2, V C ∪ IS is the set of
all removed vertices, since each removed vertex is added to
either V C or IS.

In Algorithm 1, the M iterations of warning propagation
do not affect the correctness of V C.

We now prove that Lines 27 to 33 in Algorithm 1 add



Algorithm 2: Prune leaves.
1 Function Prune-Leaves(G = 〈V,E〉)

Modified: G: The input graph.
2 Initialize vertex sets V C and IS to the empty set;
3 for v ∈ V do
4 Prune-A-Leaf(G, V C, IS, v);

5 return V C, IS;

6 Function Prune-A-Leaf(G = 〈V,E〉, V C, IS, v)
Modified: G: The input graph.
Modified: V C: The current VC.
Modified: IS: The current IS.
Input: v: A vertex in V .

7 if κ(v) = 1 then
8 u := the only vertex adjacent to v;
9 V C := V C ∪ {u};

10 IS := IS ∪ {v};
11 U := ∂u \ {v};
12 Remove v and (u, v) from G;
13 for w ∈ U do
14 Remove (u,w) from G;
15 Prune-A-Leaf (G, V C, IS, w);

16 Remove u from G;

Algorithm 3: Compute p0 for different random graph
models.

1 Function Compute-p0(G, model)
Input: G: The input graph.
Input: model: The random graph model to use (ER or

SF).
2 c := average degree of vertices in G;
3 if model is ER then
4 p0 := 1−W (c)/c;
5 else if model is SF then
6 λ := Z−1(c);
7 Compute p0 according to Equation (4);

8 return p0;

new vertices to V C to cover all edges in G. Since Line 31
guarantees that no two adjacent vertices are added to IS,
IS must be an independent set of G. In addition, Line 28
guarantees that IS and V C are complementary, i.e., IS ∩
V C = ∅ and IS ∪ V C = V . Therefore, V C must be a
vertex cover.

(Cai 2015) has proved that Remove-Redundancy pro-
duces a minimal vertex cover provided that V C is a ver-
tex cover. Therefore, MVC-WP produces a minimal vertex
cover.

Theorem 2. The time complexity of MVC-WP is O(|V | +
|E|).

Proof. We first prove that Prune-Leaves terminates in
O(|V | + |E|) time. This can be done by counting the num-
ber of times that Prune-A-Leaf is called, since the only
loop in Prune-A-Leaf makes only one recursive call in
each iteration. Line 4 in Algorithm 2 calls Prune-A-Leaf
at most |V | times. Line 15 calls Prune-A-Leaf iff

Algorithm 4: Remove redundant vertices from a given
VC.

1 Function Remove-Redundancy(G = 〈V,E〉, V C)
Input: G: The input graph.
Input: V C: A VC of G.

2 Build an associative array loss for vertices in V C to
record whether they can be removed from V C;

3 Initialize loss to zeros;
4 foreach e ∈ E do
5 if only one endpoint vertex v of e is in V C then
6 loss(v) := 1;

7 foreach v ∈ V C do
8 if loss(v) = 0 then
9 V C := V C \ {v};

10 foreach v′ ∈ ∂v ∩ V C do
11 loss(v′) := 1;

12 return V C;

k 2 3 4 5 6 7 8 9

ζ(k) 1.645 1.202 1.082 1.037 1.017 1.008 1.004 1.002

Z(k) +∞ 1.369 1.111 1.043 1.020 1.009 1.004 1.002

Table 1: Shows the values of ζ(k) and Z(k) = ζ(k−1)
ζ(k)

for k ∈ {2, 3, . . . , 9}. The values of ζ(k) are taken
from (Haynsworth and Goldberg 1965, Table 23.3), and the
values of Z(k) are computed from the values of ζ(k).

edge (u,w) is removed from G. Therefore, Line 15 calls
Prune-A-Leaf at most |E| times.

Obviously, Compute-p0 terminates in constant time.
In Algorithm 1, Lines 8 to 15 iterate over each edge in

G′ exactly once, and therefore terminate in O(|E|) time;
Lines 16 to 26 iterate over each edge in G′ exactly M times,
and therefore terminate in O(|E|) time; Lines 27 to 33 con-
sider each vertex v inG′ at least once and at most κ(v) times,
and therefore terminate in O(|V |+ |E|) time.

(Cai 2015) has proved that Remove-Redundancy ter-
minates in O(|V |+ |E|) time.

Combining the results above, MVC-WP uses O(|V | +
|E|) time.

Theorem 3. The space complexity of MVC-WP is O(|V |+
|E|).

Proof. (Cai 2015) has proved that Remove-Redundancy
uses O(|V | + |E|) space. The recursive calls of
Prune-A-Leaf initiated in Prune-Leaves use O(|E|)
stack space. The remaining steps in MVC-WP require
O(|E|) space to store messages and O(|V |) space to store
counter as well as the status of each vertex v, i.e., whether
v is in V C, IS or undetermined yet. Therefore, MVC-MP
uses O(|V |+ |E|) space.



Computing Special Functions
In Algorithm 3, we are required to compute a few special
functions, namely the Lambert-W function W (·), the Rie-
mann zeta function ζ(·) and the inverse function of Z(·).
For some of these functions, researchers in the mathematics
community have already developed various numerical meth-
ods (Corless et al. 1996; Hiary 2011). However, they are too
slow for MVC-WP, which does not critically need this high
accuracy. We now present a few new approaches to quickly
compute them sufficiently accurately.

The Lambert-W Function W (·)
We approximateW (·) via the first 3 terms of Equation (4.19)
in (Corless et al. 1996), i.e.,

W (c) = L1 − L2 + L2/L1 +O
(
(L2/L1)

2
)
, (5)

where L1 = log c and L2 = logL1.

The Riemann Zeta Function ζ(·)
For the SF model, we need to compute ζ(x) in Equation (4)
for a given x. To compute ζ(x), we approximate ζ(x) via
its first 20 terms, i.e., ζ(x) =

∑20
k=1

1
kx+O( 1

21x ). This is
sufficiency because λ > 2 always holds in MVC-WP due to
Line 6 in Algorithm 3, since ∀c ≥ 1 : Z−1(c) > 2. In this
case, the sum of the remaining terms is sufficiently small to
be neglected, i.e.,∑∞

k=21
1
kx∑∞

k=1
1
kx

≤
∑∞
k=21

1
k2∑∞

k=1
1
k2

≈ 0.030. (6)

The Inverse Function of Z(·)
• For any x < 1.002, we approximate Z−1(x) to be equal

to +∞ (and thus approximate p0 to be equal to 0 in Algo-
rithm 3).

• For any 1.002 ≤ x ≤ 1.369, we approximate Z−1(x) via
linear interpolation according to Table 1, i.e., we assume
Z−1(x) changes linearly between two consecutive entries
given in Table 1.

• For any x > 1.369, we have 2 < k = Z−1(x) < 3. In this
case, we approximate ζ(k) via linear interpolation, i.e.,

ζ(k) ≈ 1.645− 0.443 · (k − 2). (7)

We approximate ζ(k − 1) via the first three terms of the
Laurent series of ζ(k − 1) at k = 2, i.e.,

ζ(k−1) =
1

k − 2
+γ−γ1(k−2)+O

(
(k − 2)

2
)
, (8)

where γ ≈ 0.577 is the Euler-Mascheroni constant and
γ1 ≈ −0.0728 is the first Stieltjes constant (Finch 2003,
page 166). By plugging these two equations into the defi-
nition of Z(k) (i.e., Z(k) = ζ(k−1)

ζ(k) ) and solving for k as
a function of Z(k), we have the approximation

Z−1(x) ≈
1.645x− γ −

√
(1.645x− γ)2 − 4(0.443x− γ1)
2 · (0.443x− γ1)

+ 2.

(9)

Our Alternative Misc Web Street Brain
Algorithm Algorithm (397) (18) (8) (26)

MVC-WP-ER

ConstructVC 211/39/147 12/1/5 8/0/0 0/0/26
MVC-2 241/46/110 16/1/1 8/0/0 26/0/0

R 376/16/5 17/1/0 8/0/0 26/0/0
MVC-MPL 317/18/62 17/1/0 1/0/7 26/0/0

MVC-L 364/19/14 17/1/0 8/0/0 26/0/0

MVC-WP-SF

ConstructVC 209/38/150 11/1/6 8/0/0 0/0/26
MVC-2 249/45/103 15/1/2 8/0/0 26/0/0

R 377/15/5 17/1/0 8/0/0 26/0/0
MVC-MPL 316/18/63 17/1/0 1/0/7 26/0/0

MVC-L 363/21/13 17/1/0 8/0/0 26/0/0

Table 2: Compares sizes of VCs produced by MVC-WP-ER
and MVC-WP-SF, respectively, with those of alternative al-
gorithms. The three numbers in the 3rd to 6th columns rep-
resent the numbers of benchmark instances on which MVC-
WP-ER and MVC-WP-SF produce smaller/equal/larger VC
sizes, respectively. The numbers in parentheses indicate the
number of benchmark instances in each benchmark instance
set.

Experimental Evaluation
In this section, we experimentally evaluate MVC-WP. In
our experiments, all algorithms were implemented in C++,
compiled by GCC 6.3.0 with the “-O3” option and run on a
GNU/Linux workstation with an Intel Xeon Processor E3-
1240 v3 (8MB Cache, 3.4GHz) and 16GB RAM. Through-
out this section, we refer to MVC-WP using an ER model
and an SF model as MVC-WP-ER and MVC-WP-SF, re-
spectively.

We used 4 sets of benchmark instances. The first 3 sets
of benchmark instances were selected from the “misc net-
works”, “web networks”, and “brain networks” categories
in Network Repository2 (Rossi and Ahmed 2015). All in-
stances with more than 100,000 vertices are used. The fourth
set of benchmark instances consists of the benchmark in-
stances in the “street networks” category in the 10th DI-
MACS Implementation Challenge3 (Bader et al. 2013), in
which 7 out of 8 benchmark instances have more than 1
million vertices.4 To obviate the influence of the orders in
which the edges are specified in the input files, we shuffled
the edges for each benchmark instance before applying the
algorithms.

To evaluate any algorithm that uses a random number
generator, we ran it 10 times on each benchmark instance
using different seeds. We recorded the average of the VC
sizes produced by these 10 runs. For all algorithms com-
pared in this section, we applied Prune-Leaves and
Remove-Redundancy as preprocessing and postprocess-
ing steps, respectively, since they are universally useful.

We evaluated MVC-WP-ER and MVC-WP-SF by com-
paring them with various other algorithms, namely MVC-
2, ConstructVC, R, MVC-MPL and MVC-L (a variant of

2http://networkrepository.com/
3http://www.cc.gatech.edu/dimacs10/

archive/streets.shtml
4We compiled these benchmark instances in the DIMACS for-

mat and made them available online at http://files.hong.
me/papers/xu2018b-data.
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(b) MVC-WP-SF versus ConstructVC/MVC-2/R/MVC-L/MVC-MPL on the misc networks benchmark instance set.

Figure 2: Compares sizes of VCs produced by MVC-WP-ER, MVC-WP-SF, and alternative algorithms on the misc networks
benchmark instance set. The x-axes show the relative suboptimality of MVC-WP-SF and MVC-WP-ER, respectively, compared
with alternative algorithms. The y-axes show the number of benchmark instances for a range of relative suboptimality divided
into bins of 1% (ranges beyond -10% and 10% are treated as single bins). Bars of different colors indicate different algorithms.
Higher bars in the left half indicate that MVC-WP-ER and MVC-WP-SF, respectively, produce VCs of smaller sizes.
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(a) MVC-WP-ER versus ConstructVC/MVC-
2/R/MVC-L/MVC-MPL on the web networks
benchmark instance set.
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(b) MVC-WP-SF versus ConstructVC/MVC-
2/R/MVC-L/MVC-MPL on the web networks
benchmark instance set.

Figure 3: Compares sizes of VCs produced by MVC-WP-
ER, MVC-WP-SF, and alternative algorithms on the web
networks benchmark instance set. The meanings of the x-
axes, y-axes, and legends are the same as those in Figure 2.
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(a) MVC-WP-ER versus ConstructVC/MVC-
2/R/MVC-L/MVC-MPL on the brain networks
benchmark instance set.
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(b) MVC-WP-SF versus ConstructVC/MVC-
2/R/MVC-L/MVC-MPL on the brain networks
benchmark instance set.

Figure 4: Compares sizes of VCs produced by MVC-WP-
ER, MVC-WP-SF, and alternative algorithms on the brain
networks benchmark instance set. The meanings of the x-
axes, y-axes, and legends are the same as those in Figure 2.
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(a) MVC-WP-ER versus ConstructVC/MVC-
2/R/MVC-L/MVC-MPL on the street networks
benchmark instance set.
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(b) MVC-WP-SF versus ConstructVC/MVC-
2/R/MVC-L/MVC-MPL on the street networks
benchmark instance set.

Figure 5: Compares sizes of VCs produced by MVC-WP-
ER, MVC-WP-SF, and alternative algorithms on the street
networks benchmark instance set. The meanings of the x-
axes, y-axes, and legends are the same as those in Figure 2.

MVC-MPL introduced by (Xu, Kumar, and Koenig 2017)).
We set M = 3 for both MVC-WP-ER and MVC-WP-SF,
noting that M = 3 is a very small number of iterations of
warning propagation.

Table 2 and Figures 2 to 5 compare these algorithms. In
the misc networks and web networks benchmark instance
sets, both MVC-WP-ER and MVC-WP-SF outperformed
all other algorithms. In the brain networks benchmark in-
stance set, both MVC-WP-ER and MVC-WP-SF outper-
formed all alternative algorithms except ConstructVC. In
the street networks benchmark instance set, both MVC-WP-
ER and MVC-WP-SF outperformed all other algorithms ex-
cept MVC-MPL. Overall, MVC-WP-ER and MVC-WP-SF
conclusively outperformed their competitors. We also con-
ducted further experiments to demonstrate the usefulness of
various individual steps of MVC-WP-ER and MVC-WP-SF.

To demonstrate the effectiveness of the message initial-
ization step in MVC-WP-ER and MVC-WP-SF, i.e., assign-
ing messages to be zero with a probability of p0 computed
from random graph models, we compared MVC-WP-ER
and MVC-WP-SF with variants thereof in which p0 is al-
ways set to 1 in order to mimic the message initialization
in the standard warning propagation algorithm (Mézard and
Montanari 2009). We refer to this variant as MVC-WP-1.

Figure 6 compares MVC-WP-ER and MVC-WP-SF with
MVC-WP-1 on the misc networks benchmark instance set.
Both MVC-WP-ER and MVC-WP-SF significantly outper-
formed MVC-WP-1 in terms of solution quality. These re-
sults demonstrate the importance of setting p0 according to
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Figure 6: Compares sizes of VCs produced by MVC-WP-
ER and MVC-WP-SF with those produced by MVC-WP-
1. The x-axis shows the relative suboptimality of MVC-WP
compared with MVC-WP-1. The y-axis shows the number
of benchmark instances. In the left half, for each point on
the curve, its y coordinate shows the number of benchmark
instances with relative suboptimality smaller than its x co-
ordinate. In the right half, for each point on the curve, its y
coordinate shows the number of benchmark instances with
relative suboptimality larger than its x coordinate. Larger ar-
eas under the curves in the left half and smaller areas under
the curves in the right half indicate that MVC-WP-ER and
MVC-WP-SF, respectively, produce VCs of smaller sizes
than MVC-WP-1.
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Figure 7: Compares MVC-WP-ER and MVC-WP-SF for
different values of M .

random graph models.
To study the effect of M on MVC-WP-ER and MVC-

WP-SF, we ran them for different values of M . For both
MVC-WP-ER and MVC-WP-SF with M = {0, 1, . . . , 5},
Figure 7 shows the sizes of the VC averaged over all bench-
mark instances in the misc networks benchmark instance set.
The average VC size decreases with increasing M . This in-
dicates the usefulness of warning propagation in MVC-WP-
ER and MVC-WP-SF.

Due to space limitations and given that all algorithms are
linear-time, we do not show running times in the experimen-
tal results. Over 80% of runs terminated within 300ms.

Conclusions and Future Work
We developed MVC-WP, a warning propagation-based
linear-time-and-space algorithm that finds a small minimal
VC for giant graphs. We empirically showed that MVC-WP
outperforms several other linear-time-and-space algorithms
in terms of solution quality. We also empirically showed



that the theoretical underpinnings of MVC-WP significantly
contribute to its success. These include both the way in
which MVC-WP performs message initialization by com-
puting p0 and the iterations of warning propagation. We also
made secondary contributions in computing various special
functions efficiently with numerical accuracy sufficient for
many AI applications. Future directions include applying
similar techniques to solving other fundamental combina-
torial problems on giant graphs.
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